Spectral Clustering with Python

Spectral Clustering is the last topic of our NLP learning group activity, hosted by Feng. Here is my homework, you may refer to this tutorial for the symbols used in this simple program. While I still have no idea about the underlying principles in the algorithm.

# copyright (c) 2008 Feng Zhu, Yong Sun

import heapq
from functools import partial
from numpy import *
from scipy.linalg import *
from scipy.cluster.vq import *
import pylab

def line_samples ():
    vecs = random.rand (120, 2)
    vecs [:,0] *= 3
    vecs [0:40,1] = 1
    vecs [40:80,1] = 2
    vecs [80:120,1] = 3
    return vecs

def gaussian_simfunc (v1, v2, sigma=1):
    tee = (-norm(v1-v2)**2)/(2*(sigma**2))
    return exp (tee)

def construct_W (vecs, simfunc=gaussian_simfunc):
    n = len (vecs)
    W = zeros ((n, n))
    for i in xrange(n):
        for j in xrange(i,n):
            W[i,j] = W[j,i] = simfunc (vecs[i], vecs[j])
    return W

def knn (W, k, mutual=False):
    n = W.shape[0]
    assert (k>0 and k<(n-1))

    for i in xrange(n):
        thr = heapq.nlargest(k+1, W[i])[-1]
        for j in xrange(n):
            if W[i,j] < thr:
                W[i,j] = -W[i,j]

    for i in xrange(n):
        for j in xrange(i, n):
            if W[i,j] + W[j,i] < 0:
                W[i,j] = W[j,i] = 0
            elif W[i,j] + W[j,i] == 0:
                W[i,j] = W[j,i] = 0 if mutual else abs(W[i,j])

vecs = line_samples()
W = construct_W (vecs, simfunc=partial(gaussian_simfunc, sigma=2))
knn (W, 10)
D = diag([reduce(lambda x,y:x+y, Wi) for Wi in W])
L = D - W

evals, evcts = eig(L,D)
vals = dict (zip(evals, evcts.transpose()))
keys = vals.keys()

Y = array ([vals[k] for k in keys[:3]]).transpose()
res,idx = kmeans2(Y, 3, minit='points')

colors = [(1,2,3)[i] for i in idx]

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

To submit your comment, click the image below where it asks you to...
Clickcha - The One-Click Captcha